第528章(2 / 2)
欧拉猜想是欧拉提出的对费马最后定理引出的猜想,即每个大于2的整数n,任何n- 1个正整数的n次幂的和都不是某正整数的n次幂。
简单的说,X的n次方+Y的n次方+Z的n次方=W的n次方,这个方程是没有正整数解的。
但L. J. Lander和T. R. Parkin推翻,他们找出n= 5的反例。
1988年,Noam Elkies找出一个对n= 4制造反例的方法。
Roger Frye以Elkies的技巧用电脑直接搜索,找出n= 4时最小的反例。
猜想才提出两百多年了,整个数学界也只找到三组等式成立的方程。
但这些都是人工搜索出来的,存在偶然性,缺乏系统。
而陈诺要做的就是系统性论述欧拉猜想。
陈诺获得这份欧拉猜想碎片只占整个猜想的三分之一,但好在是第一部分的。
费马大定理被怀尔斯这个大佬证明了,陈诺也研究过费马大定理。
有着国际顶尖数学技能再开启超级学神附身卡,欧拉不是问题,哥猜完成了九成多了,到时候开启人类心智巅峰体验卡,估计问题也不大。
反而是角谷猜想是最难的了,它的表述很简单,但需要证明的步骤太难了。
“一号,搜索欧拉猜想、角谷猜想及相关的论文,只要T类和A类期刊发表的,帮我打印出来!”
柿子当然要挑软的捏了。
陈诺起身活动了一下,打开电脑,就噼里啪啦的开始了。
想要证明首先得把得到的碎片吃透,陈诺准备将得到的碎片搞出来,仔细研究后开始。
两天后,陈诺将一号智脑从380篇与欧拉猜想有关的论文,筛选出来的12篇论文全部都扫了一遍,收获极大,获得的碎片内容也全部吃透。
【论欧拉猜想表达式的正确与否】
↑返回顶部↑